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Abstract

Correction terms are obtained for the diffusion approximation
to one and two barrier ruin problems in finite and infinite time. j
The corrections involve moments of ladder height distributions, and a
method is given for calculating them numerically. Examples show that
the corrected approximations can be much more accurate than the

originals.

Key Words and Phrases: Diffusion approximation, heavy traffic, J
random walk, gambler's ruin.
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CORRECTED DIFFUSION APPROXIMATIONS
IN CERTAIN RANDOM WALK PROBLEMS

1. Introduction and Summary
Let xl,xz,..., be independent and identically distributed

with mean y = E(xl). Let sn = x14-...4-xn, and for a < 0 < b define

the stopping times

T = 1(b) = inf{n: sn>b} (t, = ©6))

and

T = T(a,b) = inf{n 18 ¢ [a,b]l} .

The probabilities

¢)) P{T < =}
and
(2) P{sT >b}

as well as their "finite time" analogues

(3) p{t i'.“}
and
(4) P{T<m, s >b}

arise in a wide variety of contexts including insurance risk theory,
queueing theory, storage theory, and sequential statistical analysis.
One very simple and useful approximation to these probabili-

ties is the so-called diffusion approximation (in queueing theory--a




E | "heavy traffic" approximation), in which the discrete random walk is
’ replaced by an appropriate Brownian motion process, for which (1)-(4)
may be computed exactly. A defect of this approximation is that in
many cases it is not sufficiently accurate; and a variety of methods,
both theoretical and numerical have been suggested as alternatives in
various special cases.

One alternative which deserves particular attention is the
beautiful result of Cramér as extended by Feller (see Feller, 1966,

pp. 363 and 393) that as b + «

(5) P{T<w} ~ ceY® .

Here £(A) = E exp(lsl) is assumed finite and y is the positive value
(assumed to exist) for which f(y) = 1. One difficulty in using (5)
is determining C, which in general is a fairly complicated functional
of the distribution of sT+. Often it can be computed numerically.
(See Woodroofe, 1978, for the first general results in this

direction.) This approach seems to be less successful in dealing

with (2), (3), and (4), although some results have been obtained by
Borovkov (1962), von Bahr (1974),‘and Siegmund (1975a,b).

The purpose of this paper is to suggest usable approximations
to (1)-(4) and related quantities by computing correction terms in
the diffusion approximation. These correction terms involve moments
of sT+, and a numberical method for computing them is described.

The paper is arranged as follows. Section 2 discusses the

simpler problem of approximating E(sup sn) = {? P{t(b) < =}db, which,
n

however, already involves the most novel mathematical results




¥

(see especially Lemma 4). Section 3 is devoted to (1) and (2) and
Section 4 to (3) and (4). The treatment in Section 4 uses Laplace
transforms. Although formal inversion of the transforms is easy and
yields what appear to be useful approximations, a rigorous justifica-
tion of the inversions remains an open problem. Section 5 discusses
numerical evaluation of the constants entering into the corrected
approximation. Section 6 contains numerical examples. The prac-
tically oriented reader may wish to read these sections in the
reverse order.

A result closely related to Theorem 2 of Section 3 was
obtained by completely different methods by Borovkov (1965).

The following notation and assumptions are used throughout.
Assume that for 0 in some open interval containing 0, under PB’
X)sXysee., are independent random variables with probability density

function
(6) exp{6x - Y(0)}

relative to some non-arithmetic measure F. (For arithmetic F
analogous but slightly different results are obtained.) The function
Yy is normalized so that Y(0) = Y'(0) = 0, Y"(0) = 1, and then F is

the Po distribution of X e It is easily verified that
' - " -
V' (0) = Eg(x;), ¥"(8) = varg(x))

and

Egx, <, =, or >0 accordingas 6<,=,o0r>0 .




I The function Y is convex and hence to small € # 0 there corresponds
exactly one 6 # 0, necessarily of opposite sign, for which
P(6) = P(6). It will be convenient to think of 60 < 0 as given and

01 > 0 defined by

)] vy =) ,

although this relation might well be reversed.
Let Pén) be the restriction of Pe to the space of XpseeesX s

so that by (6), for all 6' and 6"

®  arfP = expl(0' - 8" - n[(e") - p(e") 1ap(D .

In particular, by (7)

(n) _ (n)
| dPel = exp{(Gl-Bo)sn}dPeo .

The following version of the fundamental identity of sequential

analysis will be used repeatedly.

Lemma 1. Let 0 be a stopping time and f a non-negative random vari-

able such that for all n = 1,2,..;, fI{G-n} is a function of

XpseeesX (and not X 410000 ). Then for any pair 6',0"
S o<} E9Pgr = Jioce) £ exp{(6" - 6")s - [(8') - Y(6") 1}dPy, .

The proof follows at once by writing f{0<“} = Z: f{c-n} and

using (8).




2. EO (sup s )
0 n>0

The following result is elegant and illustrates the basic

mathematical techniques of this paper. The proof of Lemma 4 seems

particularly interesting. Recall that T _ = inf{n : sn>'0}. It will
be convenient to use the notation A = 61 - 60 and W = sup s .

n>0
Observe that as 00 40, 01 ¥ 0 and hence A » 0. &g

Theorem 1. As 60 40

2 3 2 2 1
1 E()ST & ali EOST+ EOs't
£ Eeow il L 2E s Y313 Egs, 2E s + o(8)
+ + +
and
Eos2 Eosf 2
2 g wfg Wy *
(10) Ee W =20 " - A + + o(1) .
0 EOST \ ZEOST
+ +
Proof. Let Tin) denote the nth increasing ladder epoch (Til)’-1+).

T, <®), Then from

Let p = Pe {T+<°°} and § = E60(3T+I +

0

o
Py {(W>x} = T Py {rin) <o, sf“) > x, Ti“ﬂ)-w}
0 ¥ 0 +

=(l-p) L Py {‘rin)<°°, sin)>x} |
1

0 y

follows




Eg W= (1-p) £ p" Fg (Sin)lfin)“” = (1-p) Znp" £ = pE/(1-p) .
0 1 o % 1

= [ s_ dP, /P, {1 =} .
{r+<m} T, 60 8, +

Hence by Lemma 1

E, [s. exp(-As_ ]
£ 61 T, T,
S 1~y exp(-AsT ) ¥
1 +

(11) E

It follows from Taylor series expansions that

Eq [sT exp(-AsT )1 = Eq 5= A Eg sf + %-AZ Eg 93 + 0(A3)
1 '+ + 1 '+ ;
and
1-E, exp(-ds ) =AE, s -1a%% si +3 8By &2 +onh.
1 + 1 + 1 '+ 1 +

Substituting these expressions into (11) and expanding yields

Ee sg A Ee si EB s: 2
(12) Bt 2 L b, 1k af L+ 1 Loady .
91 2 EB sT 3 Ee sT 2 Ee sT
1 % 1 "% 1 %+

By Lemma 2 below

k+1
g

k
(13) E, s E.s + 6.k E.s
el L 0 L 170

/(k+1) + o(d) .

Observing that A ~ 201 and substituting (13) into (12) yields (9).

The proof of (10) is similar and has been omitted.




Lemma 2. For each k > 0, as 61 ¥ 0

Eq s',: - 'ios_l: + 0,k Eos:+l/(k+1) +o(6) .
1+ + +

Proof. From the representation
k k
E,s. =E.{s. explts_ -1, 9(0)])}
8r+ 0 T T, +

and the dominated convergence theorem it is easy to see that

(14) Lin Egsy = Egsy .
06+0 + +
This representation also shows that f(0) = Ees: is continually dif-
+
ferentiable on (0,€) for some € > 0 and
(15) £1(0) = Eglsf (s_ -ut)]
+ o+

where ue = P'(0) = E It will be shown in Lemma 4 below that

exl.

: R k+1
(16) 11muEeT_‘_sT --E()sT [(k+1) .

6+0 + +
Writing

0
£(0)) = £(8) + (8, -0)E'(8) + 4, "[£'(y) - £' () dy
letting © » 0, and appealing to (14)-(16) completes the proof.
Let ¢(x) = (2'rr)_!i exp (- % x2) and ®(x) = {:D¢(Y)dy. For

t >0, ~o< g <o and ¢ > 0 let

GtsE,c) = 1 = O(et -ty + 2°¢ P(-ct i-h) .




S s -g~—m.,,J

Let H(x) = (E.s ).1 /X p {s_ >yldy. It follows from the invariance
O'l’+ 0 O'r+

principle of Erdos and Kac (1946) that if b > ® and 6 + 0 such that

6b » g € (_m,m), then

(17) lim Pe{rgbzt} = G(t;&,1) (0< t <)
or equivalently

: 2 2.%
(18) lim Eg exp(-AT/b") = exp{-[(2A+E°)*-E]}

uniformly in A > 0. From consideration of the renewal process defined
by the increasing ladder heights and the renewal theorem (e.g.,

Feller, 1966, p. 354), it follows that

(19) lim Po{sT -b<x} = H(x) (0<x <o) |,
b

The next lemma extends (19) to the case 6b + £ > 0 and
establishes the asymptotic independence of s -b and T/bz. For the
T
case 6=0 it was stated by Siegmund (1975b). The method of proof is

a modification of the argument of that paper.

Lemma 3. Let 6 > 0. Suppose b > ® and 6 + 0 in such a way that

6b > £ €[0,°). Then

(20) lim Pe{ribzt, s_[—bix} = G(t;€,1) H(x) .

Proof. Let m = [bztf ([*] = integer part).

(21) Pe('t(b) >m, St (b) -b<x}
= J['O’m) Pe{I(b) >m, smeb—dy} PG{ST(y) -y<x} .
8




Consider splitting the integral in (21) into three pieces according
as 0 <y <eb, b <y < b/e, or h/e <y < », where 0 < € < 1 is given.
E It follows easily from the central limit theorem that as b > ®

lim Polt(b) >m, b(1-€) <s <b} < Tim Po{b(1l-¢) < s, <b} < const. €,
so the first integral is small provided € is. Similarly, the integral
over b/e < y < @ may be shown to be small for sufficiently small € and
all large b. Consider first the case O = 0. Then by (19), over the
range €b < y < b/e the integrand in (21) converges uniformly to H(x),
which together with (17) completes the proof in this special case.

By Lemma 1

(22) PO{ST(y) -y<x} = egy I exp{0 [s

—y]-—r(y)w(e)}dPo.
{sT(y)nyfx}

(y)

Also, W(O) ~ 0°/2 (9+0). Hence, by (22), (18) with B=0, and the

special case of (20) with 0=0 one obtains

lim l’e{sT(y) -y<x} = H(x)

uniformly in be <y < bc—l. Repeating the first part of the argument

with this strengthened form of (19) completes the proof in the general

case.
Lemma 4. lim ue Ee T s: = E0 s¥+1/(k+-1) (k>0).
6+0 + +
Proof. For O > O
k % k % k
YE.(T.8" Y=yl [ s dP, =pi S E.ls -x]"P.{t, >n, s €-dx}.
R e el {1,>n} % % "olom 9 X g "




Let M = min s , and let Tfr) denote the r®" weak descending ladder
0<n<®

epoch. Then

(o] (o]
L Pe{’r+>n, sn<-x}= z Pe{sn-skSOVOSkin, sn<—x}
n=0 n=0

(o] oo
R Pe{TEr)=n, s <-x}
n=0 r=0 -

(o]

=E. T I P {r(r)«», s <-x}p. {1 =}
Bk g0 . T(1—) 6" -

©o

T W L T
r=0 e T(r)

-

<x, T£r+1) = oo}

" Pe{M<—x} 4

Here the third equality follows from the well-known identity

Baty ™ 1/Pe{T__=°°} (cf. Feller, 1966, p. 379). Hence by Wald's

identity and Lemma 1

(23) w Ee(r+ s.l: )

E. 8 E,[s -x]kP{MG—dx}
% e 5 [0, %) 0 %1 (x) )

k
. A 3 E.{[s -x/6]
9 T+ [0,°°) 0 T(X/G)

exp [e(sT(x /gy = X/®) - w(®)T(x/6) 1}e* PoiMe -dx/6} .

By the renewal theorem, (18) with 6 =0, and Lemma 3

10




k
(24) éi’é‘ Eolls(xsey ~ /01 explB(s gy = %/0) - ¥(B)T(x/6) ]}

-X k+1

=i EO S, /(k+1) EO S, z

+ +

Moreover, an examination of the proof of (24) shows that the indicated
convergence holds uniformly in [E,e-ll for each € > 0, and the expec-
tation on the left is bounded uniformly in x and (small) 6. An easy

argument based on Lemma 1 (cf. Section 3, especially (25)) shows that

Pe{Mf—x/G} > e-2x (x>0)

Also for sufficiently small 6

Po{M<-x/6} < exp(-3x/2)
Hence, partitioning the range of integration in (23) into [0,€).
[S,E_I], and (e_l,M), and substituting (24) yields

k -1 k+1 -2x
lim p Ee(T+ S, ) = (k+1) EO S, /i 2e

+ + [0,)

dx

which completes the proof.

3. Peo{r <»} and PBO{ST>b}

Suppose that b + ® and 90 4 0 in such a way that beo*-—£<0 .
Then bel +> & and bA = b(el-eo) + 2¢. From Lemma 1 and a Taylor

expansion it follows that

11

- » i T m—— " AR M i Mt < i

Rk



(25) Py {T<w} = oAb By expl-A(s_-b)]

0 1

-Ab 12 2 3
= e [1-4 Eel(sr-b)+§A Eel(st—b) +0(8%)]

By Lemma 1

| Eel(sT—b) = Eof(s_l,—b)expfe1 s, -ty (91)]} z

By Lemma 3 and a uniform integrability argument

< By = -£ 2
Eol(s -blexp[B (s -b) -1 (6]} > e E, sT+/2Eo sT+ :
so by (25)
-Ab 2

(26) P, {1<w} =e " [1-AE s_ /2E,s_ + o(d)]

90 07t 0t

+ +

It will be notationally convenient to put

2
27) B=E,s_ /2E.s
n e U,

Since the factor 1-RBA+0(A) in (26) arises from expanding an exponen-

BA

tial function and since 1-BA+0(A) = e " +0(A) as A » 0, it seems
plausible that a better numerical approximation might be provided by

taking

e—A(b+B)

(28) Py {t<w} =
0

It is the content of Theorem 2 below that under slightly stronger
assumptions the approximation (28) is valid up to terms which are

o(A%) rather than the o(A) provided by (26).

12
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Let =(A) = {:; ele G(dx) denote the characteristic function
of the probahility distribution G. The distribution G is called

strongly non-lattice by Stone (1965) if for each & > 0

inf |1-g(\)]| > 0
Ix]>6

Stone shows that for a strongly non-lattice distribution with an
exponentially small tail the remainder in the renewal theorem
vanishes at an exponential rate. A uniform version of this result

leads to

Theorem 2. Assume that F (the PO distribution of xl) is strongly
non-lattice. Let b - © and 90 * 0 in such a way that Sob +-£<0.
Then

(29) Py (1<} = e™P1-gr+82a%24000%)
0

2
where A 61—60 and B = EO sT+/2 Eo sT+ ’

Proof. A uniform in 91 version of Stone's (1965) result (see below)
applied to the Pe renewal process defined by s. implies that for

1 +
some r >0 and all smell 61

" -rb
Ey (s_-b) =E, s /2E, 8. + 0(e ") .
81 T 61 L 61 L

The argument preceding (26) shows that

2 3
E, (s_~b) =+ E.s_ [/3E.s .
61 T 0 T 0 T,




Substituting these results into (25) and using Lemma 2 completes the
proof.

For the most part the required uniformity in Stone's result
may be inferred from minor modifications in his argument. The

following lemma provides some of the necessary technical results.

Lemma 5. Assume that F is strongly non-lattice. Then the Pe distri-

butions of s, are strongly non-lattice uniformly in small 0 > 0.
+

Also there exists r > 0 such that for each § > 0 Ee exp(st ) is
+

bounded away from 1 in O < Rez < r, |z| > &8, uniformly in small 6 > 0.

The proof foliows by first showing that the Pe distributions
of x, are uniformly strongly non-lattice and then using the Wiener-
Hopf factorization of these distributions (Feller, 1966, p. 570) to
show that the Pe distributions of s, are uniformly strongly

+
non-lattice. The details have been omitted.

Remark. Although (26) is '"obvious," (29) occurs because two teris
involving Eosi+/EosT+ cancel, and hence is somewhat surprising. It
is natural to ask whether this phenomenon might persist, i.e.,
whether the remainder in (29) is —B3A3/3! + o(A3). That this is not
in general true may be seen from the special case F(dx) = % e-|x|dx.
for which P, {t <=} may be calculated exactly. See Section 6.

0
Combining the preceding results with the identities

(30) P, {s.>b} =P, {1<w}-/ P, {1<=|s,_ }dP
% T % (s,<al % ol
and
14




(31) P, {s,<al =P, {t*<w} - J P, {t* <=|s_}dpP
o B # fsp>b} 1 By
|
f (t* = inf{n :sn'<a}) vields approximations for probabilities such as
|

(2). In practice |a| is frequently 0 (e.g., cumulative sum control
k charts--see van Dobben de Bruyn, 1968) or of the same order of magni-
[ tude as b (e.g., a symmetric sequential probability ratio test). One

L example of the possible results is the following.

Theorem 3. Suppose a > -», b > », and 90 t+ 0 in such a way that
| |a|/b +c € (0, and Bob + - £ < 0. IfF is strongly non-lattice,
then

' (32) PGO{ST‘>b}

= {1-exp[A(a+a)]}/{exp[A(b+B)]-exp[A(a+a)]} +o(A2) .

2 2
r Here B EosT+/2EosT+ and o = EOST_/ZEOST_'

Proof. The first term on the right hand side of (30) is given

approximately by Theorem 2. To analyze the second term write

: S P, {1(b) <=|s_lapr
é {s,<a) % e
: s + [ P, {s,€a-dx}P, {1(b-a+x) <=}
= s, €a-dx T(b-a+x) <=}
©,lal®  [lal%e) % T %
é The integral over [‘al%,w) is majorized by
Peo{sTfa- |a|%} e Peo{'l‘> Ials} + Py { sup |xn| > Ial"}

n<|al
= o(lal™}) = oady ,

15




and hence may be neglected. The proof of Theorem 2 shows that
uniformly for 0 < x < |a|%

Py {T(b-a+x) <=} = exp[- A(b-a+x+8)] + e
0

so by Lemma 1

s p. {1(h) <=|s_)dP, = expl- A(b+B)IP. {s.<a} + o(2®) .
{sT<a} 60 T e0 e1 ¥

Hence by (30) and Theorem 2

Peo{s,r>b} = exp[- A(b+RB) ]Pel{sT>b} % ot

A similar argument starting from (31) yields a second relation for
Py {sT:>b} and P, {sT<<a}, the simultaneous solution of which gives

0 1
the theorem.

4. Pe{rgm} and Pe{Tgm, sT>b}

The following interpretation of (28) and (32) seems helpful
in what follows. The addition of o and B to a and b may be regarded
as a continuity correction to be made in replacing the discrete time
random walk {sn} by the continuous time Brownian motion process. The
constant A, which is twice the absolute value of the mean of the
approximating Brownian motion process, contains a correction for non-
normality of the random walk. If the x's are normally distributed

- HERD: - d
with 6 = Eexl. then 90 - = A and 61 3 A since no correction for

non-normality is necessary. (This interpretation oversimplifies




|
|

|
|
|
|

somewhat, because o and B are distribution dependent and hence correct
for non-normality as well as continuity.)

In approximating the probabilities (3) and (4) the situation
becomes more complicated, because a more elaborate correction for non-
normality is needed. This correction can be written in a fairly
simple form by keeping the preceding interpretation in mind.

For the sake of simplicity oaly the one-sided stopping rule T
is discussed in detail. As in the preceding section, b + ® and 6 > 0
in such a way that 6b = Eb + £. An expansion for Eq exp(—lr/bz) up
to terms which are o(b_l) is obtained, and this expansion is formally
inverted to give an approximation to Pe{Tjgbzt}. No attempt has been
made to justify this inversion, although it is natural to conjecture
that the approximation obtained is correct up to terms which vanish

faster than b—l.

Theorem 4. Let y = E xi, and as before let 8 = E 52 /2E.s

0 O'r+ 0T+

Assume that b > ©® and 6 + 0 in such a way that 6b = Eb >t Let

h(AE) = (A+EDY% - £, Then

(33) Ee exp(-AT/bz) = exp[—h(X,Eb)(l-kB/b)]

+ (60)° Y yi2a 482 £37 (20 + £ FJexp -0 (A, E) ] 4067y .

Proof. To simplify the notation assume that Eb £ & By Lemma 1, for

6>0

1= pylr<=l = By exp{(é—e)sT-T[\b(é) -w(®) ] .

17
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Replacing 0 by 5/b and O by £/b gives
exp[-(8-£)] = By exp{(0-£) (s, - b)/b-T[W(6/b) - Y(E/D)]} .

Using the expansion YP(x) = x2/2 + Yx3/6 + O(xa) (x+0) and setting

~ 2
8= (A+ED)"? yields

exp[-h(1,8) ] = Eg exp{h(A,E) (s_~b) /b~ at/b =83 -3 t/6p2 407Dy,

)

which by Taylor expansion and application of Lemma 3 and uniform

integrability becomes

Bolexp(-At/b%) [1-¥(3> - E) /661 (14 h (0, E) (s~ B) /b]} +0(b™h)

=F exp(-h‘/bz) + Bb_lh()\’g)e‘h(x,g)

)

At

3 t e Pe{TEbz dt} + o(b-l) s

f(D

- 607!y -2 f

)

L)

By (18) this last integral converges to - é% , and hence

E exp(-XT/bz)

)

= PN g gy ha,6)) + (6b) 7 yl2a+ E2 - £3/ (20 + £2) %] R ALE)
+ o(b-l) ¥
which is equivalent to (33).
With the help of (17) and (18) it is an easy matter to invert

(33) term by term. Fowever, some additional reflection permits one

to write the inversion in a simpler form, which at the same time

seems to be more accurate from the point of view of numerical




calculation. 1In the case £ < 0, it seems desirable that if one
inverts (33) and ther sets t = + », the resulting approximation
should agree with (28). A Taylor series expansion shows that for

0 = 90 <0

exp(-h(h, =3 4b) (1 +6/b)] = exp[-h(A,£,) (1+B/b)]

+ o Yete? - 1 Y e BT Vel |

while for 8 = 6 > 0 a similar result holds with h(A, +% Ab). Thus

(33) may be rewritten

B, exp(-Nifb") = exp [-HEh, t%Ab) (1+B8/b) 1+2(3b) Ly exp[-h(A,E) 1 +0(b™]),

0

where + A is for 6 > 0 and - A for 6 < 0. Formal inversion now

yields

e

Polt<b’t} = G(e; £28b, 1+8/b) + (3) 1 yG'(:E,1)

which is consistent with (28) for t = + ©». A yet simpler
approximation, which is consistent with and enlarges upon the inter-
pretation of the first paragraph of this section follows from a
further approximation of this last expression by

G(t+ (3b)—1 Ys t—;—Ab, 14B8/6). Rewriting in terms of m = b2t yields

finally

A,b+B) .

N =

(34) Pyt <m) = G(m+—§- b ¢

This result has the interpretation that to compute Pefrinﬂ approxi-

mately one should use the corresponding result for a Brownian motion
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with b replaced by b + 8 to correct (primarily) for continuity, 6

replaced by ¢ % A to correct for non-normality and m replaced by

m + % Yb, also to correct for non-normality.

A similar bu*t more elaborate argument yields an exactly
analogous approximation in the case of two barriers. If % denotes
the first time that Brownian motion X(t) leaves (a,b), and

G,(t:€,a,b) = P€{§< £ XOT) = ) bhinn

- 1
PB{Tfm, s,r>b} = G, (m+3Yb; t%A, a+a, b+B) .

5. Numerical Computation of Moments of Ladder Heights
The approximations of the preceding sections involve moments

of the ladder heights s, and S. - In principle the characteristic
+ -

functions of these random variables are available from random walk
theory, and hence the required moments may be calculated. In prac-
tice results have been obtained only for special problems. In a
related context Woodroofe (1978) suggested a general method based on
numerical integration of the characteristic function of the x's. 1In
this section Woodroofe's method is adapted to the problems at hand.
By the duality between sT+ and sT- (Feller, 1966, p. 570), it
suffices to consider only sT , from which the corresponding results

+
for s may be directly obtained. According to Lai (1976)

.,,’- < i ]

2 .02 n_ -1 et
(35) E.s_ /E.s_ = L ;2 -D"-n""E s |+ + 3 E x
e e n_ol_\n 'y T 3 TER

’
where n-1 Elsnl = 0 for n = 0. Hence it is necessary to compute
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numerically only one series to use the approximations suggested in
the preceding sections.

Let f(t) = E. exp(i txl), and assume that [:;|f(t)|dt'<w.

0
(This assumption can be removed by a simple smoothing argument.)
Then the distribution function F has a bounded continuous density fl

given by the Fourier inversion formula. Let fn be the n-fold convo-

lution of this function, so

-itx _.n
e

(36) £ = oL £ (t)de .

The series in (35) equals

1 S A
(37) Tin Me (5@ <) Tt a?
1

n
z E.|s_|exp(-A|s_ D} .
z+1 A0 ki 9

The Fourier inversion formula (36), Fubini's theorem, and some calcu-

lus gives
I n-'1 2" E0|sn|exp(->\|sn|) -En LZ |x|e-”x|fn(x)dx
= 2l 2 0k T2+ 0-10) 21 (D)t

. e 'y (t2-22y (£2422) "2 Relog (1-2£(t))dt .

Observing that 4; (tZ-AZ)(t2+Az)-2 dt = 0 permits one to rewrite this

last expression as
2n7 £ (202 (6207 72 Relogl [1- 2£(£) 1/(1 - 2) }de

= 2170 £ (6222 (£2422) 72 Relog{1+2[1-£(t))/(1-2)}de .

0
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x3. The expansion as t > 0

Let Yy = EO 1

(8) 1% 3'l-2())/1-5) =1 +%z (1-2)‘1t2[1+-1§ 1yt +0(t2) ]

is used repeiitedly. To evaluate

(39) tim I° 20* %" Retog il +2li- #0111 - 2)de

As0 0

consider the integrals over (0,e) and (€,©) separately. The
expansion (38) shows that the integral over (0,c) may be made arbi-
trarily small by taking € small enough. The dominated convergence
theorem applies to the integral over (€,®). Hence, letting A > O and

then € +0 shows that (39) equals

Jg) t.2 Relog {1+z[1-£(t)]/(1-2)}dt .

A similar calculation shows that

7 &

(6242772 Relog {1+2[1-£(6)]/(1-2)}dt » 0

A

as A > 0, and hence it suffices to evaluate

-1 -2

IZ 7% Relog {1+2[1-£(t)]/(1-2)}dt]

(40) nm[z"’(l - z)-;!- L

z+1

Integration by parts shows that

{; s log(l-sz)dx 5"

and hence (40) may be rewritten

(41) - lim 217_1 Jgo t—2 Re 108"1+2[1°f(t)]/(1-z) dt

SRR s t2/2(1 - 2)
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Consider the intergrals over (0,c) and (€,®) separately. The expan-
sion (38) shows that for t € (0,c£) the argument of the logarithm in

(41) equals
1- (7 2 +o/a-2) )+ 220-2]) .

Hence, from the Taylor series for the logarithm one sees that the

integral over (0,e) is small for small €. By the dominated con-

vergence theorem the integral over (g,®) converges to
f: t™2 Re log {201 - £¢t) 1/t )ae ’

as z > 1. The expansion (38) shows that the integrand is bounded at

0. Hence, letting € + 0 gives the result.

2 By | 3 _, -1 -1 = 2
(42) Eys; /Ejs, =3 Egx; -2 fit Re log {2[1 - f(t)]/t"}dt ,

+ + .

which can be evaluated numerically in many concrete cases.

Remark. The corresponding result for EosT is
+
% -1 o -1
E.s. =2 “exp(r " [, t " Imleg [1-f(r)lat} .
(4] T, 0 ;

6. Numerical Examples

For a simple but instructive example let F(dx) = % e—le dx.

It is easy to see that 61 = -90, so A = 261. and for all b > 0 and

91 > 0 the Pe -distribution of sT-b is exponential with mean

T -
(1- 3 A)

1

1. Hence, by Lemma 1 applied to 90 and 61

o i s a o S it




<o} = -Ab _.l 1
Py (1<%} = P m/aE 3

si /ZEOST =1, so (28) becomes
+ +

Also, B = Eo

2y sal .00

0

e

The relative error of this approximation is e—A(1+~%A)/(1-v;A) -1
.01 for A = .5. 1In this example PQO{T<<m} is the stationary prob-
ability that the waiting time exceeds b in a single server queue with
Poisson input of intensity (l-v%A) and exponential service with mean
(1 +-%A)-1. The traffic intensity is (1-—%—A)/(l +%—A). The

60{‘r<°°} = e—Ab, which is valid
in "heavy traffic," i.e., for A = 0. For A = .5 the traffic

customary diffusion approximation is P

intensity is .6, which is far from heavy traffic, but the approxima-
tion (28) is quite good. For this A the uncorrected diffusion
approximation has relative error .67 and doesn't attain 17 accuracy
until the traffic intensity is .99.

For a non-trivial and important example suppose that F = .
The stopping rule T defines a sequential probability ratio test for
deciding whether a normal mean 6 is positive or negative. Several
quantities similar to (4) arise in studying a truncated version of
this test. They have been computed by iterative numerical integra-
tion by Aroian and Robison (1969). The preceding section suggests
that one approximate these quantities by computing their analogues

for a Brownian motion process with stopping boundaries at b + B and
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ghame et e aby s aaliodo R ML S S ol s ) A the

a + a. Tt is easy to use either (35) or (42) to obtain

B=-0a=E a5 /2B 5 583,

S
0 T+ 0 T+

Table 1 gives the results of several exemplary calculations.
For comparison the "exact'" results of Aroian and Robison (1969) are
included as the second entry of each cell. In some cases the unmodi-
fied diffusion approximation is given as the third entry. In
general, the suggested approximation is good and the diffusion
approximation poor.

Even for Brownian motion the exact formulas for the quanti-
ties in Table 1 are complicated, and it is worth noting that simple
approximations suffice. For example, if X(t) is Brownian motion with
drift 6 and ; = inf{t: X(t) ¢ (a,b)}, then (Ito and McKean, 1965,

p. 31)

PO{';‘>t, X(t) €dy} =2 T exp [-nznzt/Z(b-a)Z]sin %1—:—'- sin E-T%Eél dy/(b-a) .
r=1

For large t, all terms in this series are negligible compared to the

first, and hence by Lemma 1 as t »> @
e b 2 2
Pe{T>t} = J; PO{T> t, X(t) €dylexp(8y -06°t/2)

2T
2(b-a)2

9(b-a)+1]s1n[ﬂ|a]/(b-—a)] "

2

~ exp{6a - § 0%t [1+7°/6° (b-a)*]} [e
m™+0

The next example illustrates the accuracy of the corrections

for non-normality. Let X_,X be independent and exponentially

i i
distributed with expectation A-l. Let AO sk, Xl = 1.5 and

R % - - _*l‘l
AT = (Al AO)/log(AI/)O) 1.233. Let s, =n A Z‘Xk and
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TABLE 1

STOPPING RULE T WITH a = -b; NORMAL VARTABLES

Parameters Pe{'l‘ > m2} PO{T > mz} P_e{T_<_m1, ST>b} Eq(T A ml)
+_o{Tm,, s >0}
1
b=5.889, 6=.25|.11, .11, .082(.35, .35, .27 044, .044 35.7,:35.9
m1=66, m2=44
b=2.944, 6=.5 |.14, .14, .082].43, .42, .27 .055, .056 8.1, 8.3
m, = mz =11

T = first n such that s_ ¢ [a,b]. The stopping rule T is that of a
sequential probability ratio test for testing A = AO against A = Al.
For the specific choice -a = 4.419, b = 5.419 the Wald approximations
to the error probabilities PXO{ST>b} and Pkl{sT<a} are both 0.1.

(Here Pk denotes probability when the exponential parameter is A and

corresponds to but is not identical with the P, of earlier sections.)

0
For various values of 10, kl' a and b this test, usually truncated,
is widely used in quality control and reliability studies. Numerical
computations of its exact error probabilities as well as various
probabilities of the form (4) have been carried out by Epstein,
Patterson, and Qualls (1963). These latter probabilities are of
interest in studying truncated versions of the test and in the theory

of confidence intervals following sequential tests suggested by

Siegmund (1978).
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TABLE 2

which are both exact to three decimal places.

-1 and B = 1

The random variable =S, has an exponential distribution with

mean \*/A. It follows easily that a =

The approxima-

tion (32) gives P, {sT> 5.419} = .087 and Py {s,r<-a.419} = .101,

Table 2 compares the

computed by Epstein, Patterson, and Qualls (1963).

approximate value of (4) recommended in Section 4 to exact values

SEQUENTIAL TEST OF A = )‘o( =1) AGAINST A= Al( =1.5)
WITH a=-4.419 AND b=5.419

*
Ao A A\
P,{T<30, s, >b} = .060 .259 .620
= .060 .261 .624
{ P,{T<30, s <-a} = 746 .346 .083
= 751 .351 .084
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